

# PDF Series | Mist Eliminator

## Low Pressure Drop Eliminates Maintenance and Saves Energy

The Pure-Aire PDF Series Mist Eliminator removes oil mist and particulate to protect the investment in your plant equipment and improve product quality. The extremely low pressure differential and extended element life reduce energy costs and maintenance intervals. The benefits of a 0.5 psid pressure differential and service life of 7 to 15 years **exceeds all standard filtration**. The use of the PDF Series Mist Eliminator ensures additional protection from a catastrophic failure inside an oil lubricated compressor separator system.

The PDF Series Mist Eliminator is available from 500 to 10,000 scfm. Standard vessel design is 150 psi gauge. Consult factory for special pressures.

### **Benefits and Standard Features**

- Oil and Particulate Free Compressed Air
- Ultra Low Pressure Drop Significantly Reduces Operating Costs (0.5 psi average)
- Element Service Life of 7 to 15 Years
- High Efficiency Filtration
  - Removal of Solid Particles 0.1 to 0.3 Micron at 99.98% Efficiency to 0.5 ppm by Weight
- Filtration Media is Designed for a High Load Factor Compared to Conventional Filters Providing 11 to 16 Times <u>Greater Filtration Surface Area, Greater Dirt Holding</u> <u>Capability</u>, and Lower Pressure Drop

#### Reduce Energy Costs

The PDF Series Mist Eliminator pressure drop design is the lowest available at 0.5 psi (average), which is typically 4 to 6 psid lower than conventional filters. This provides significant

energy savings based on the rule of thumb that for every 2 psi pressure drop that is eliminated a 1% energy reduction in HP is achieved.

Annual Energy Savings: 4 psi = 2% Savings in Lost Compressor Power

#### Annual Energy Savings on a 100 HP System

```
$0.08/kWh x 8760 hours x 74.6 kW x 2% = $1,046
$0.10/kWh x 8760 hours x 74.6 kW x 2% = $1,307
$0.12/kWh x 8760 hours x 74.6 kW x 2% = $1,568
```





Typical placement of the PDF Series Mist Eliminator in the system is designed to remove solid, liquid, and/or gaseous contaminants prior to the air dryer. This will reduce excess contaminants and oil from building up.

A coalescing pre-filter for removal of entrained condensate and oil to prevent fouling of the desiccant and an optional pre-filter may be recommended for additional contaminant removal. Liquid condensate entering a desiccant bed will lead to rapid deterioration. Oil entering the desiccant bed will permanently reduce the capacity of the desiccant.

Automatic drain valves should be installed on any filter that may collect water, condensate, or liquid oil. Drains should be tested regularly to ensure the correct drainage and operation. For maximum energy savings a Pure-Aire zero-loss drain is recommended.

#### **Technical Specifications**

| Model    | scfm<br>50 PSIG | scfm<br>60 PSIG | scfm<br>70 PSIG | scfm<br>80 PSIG | scfm<br>90 PSIG | scfm<br>100 PSIG | scfm<br>110 PSIG | scfm<br>120 PSIG | In/Out  | Length<br>(Inches) | Width<br>(Inches) | Height<br>(Inches) |
|----------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|---------|--------------------|-------------------|--------------------|
| 500PDF   | 280             | 325             | 370             | 415             | 455             | 500              | 545              | 585              | 3" NPT  | 24                 | 21                | 68.25              |
| 800PDF   | 425             | 490             | 560             | 625             | 690             | 800              | 820              | 885              | 3" NPT  | 24                 | 21                | 68.25              |
| 1100PDF  | 620             | 715             | 810             | 910             | 1005            | 1100             | 1195             | 1100             | 3" NPT  | 28                 | 23.5              | 72.5               |
| 1500PDF  | 845             | 975             | 1110            | 1240            | 1370            | 1500             | 1630             | 1500             | 4" FLG  | 28                 | 23.5              | 72.5               |
| 1900PDF  | 1070            | 1235            | 1405            | 1570            | 1735            | 1900             | 2065             | 1900             | 4" FLG  | 34                 | 32                | 76                 |
| 2400PDF  | 1355            | 1565            | 1770            | 1980            | 2190            | 2400             | 2610             | 2400             | 4" FLG  | 34                 | 32                | 76                 |
| 300PDF   | 1690            | 1955            | 2215            | 2475            | 2740            | 3000             | 3260             | 3000             | 4" FLG  | 34                 | 32                | 89                 |
| 4500PDF  | 2540            | 2930            | 3325            | 3715            | 4110            | 4500             | 4890             | 4500             | 6" FLG  | 34                 | 32                | 153                |
| 6000PDF  | 3385            | 3910            | 4430            | 4954            | 5475            | 6000             | 6525             | 6000             | 8" FLG  | 41                 | 39                | 155                |
| 8000PDF  | 4515            | 5210            | 5910            | 6605            | 7305            | 8000             | 8695             | 9395             | 8" FLG  | 41                 | 39                | 181                |
| 10000PDF | 5640            | 6510            | 7380            | 8255            | 9125            | 10000            | 10870            | 11740            | 10" FLG | 47                 | 39                | 211                |

#### Note:

Coalescing efficiency is reduced as the temperature rises. Consult factory if the system inlet temperature exceeds 125°F. Maximum operating temperature is 220°F.